
GPU Programming Optimization 
- GSoC 2023 (Cont’d) 

Huiyu Xie
huiyuxie.sde@gmail.com

1

mailto:huiyuxie.sde@gmail.com


GSoC 2023 Project Brief Review

2

Links to some relevant resources:

- Trixi.jl (Docs, GitHub)
- CUDA.jl (Docs, GitHub)
- GSoC 2023 Project (Google, Code, Report)
- CUDA (Docs)
- AWS (Docs)

 

The project focused on accelerating the discretization processes used in 
solving partial differential equations (PDEs) via GPU programming.

Trixi.jl

CUDA.jl

Note: The GPU type selected for 
this project is the NVIDIA Tesla 
V100, which features 5120 CUDA 
Cores and 640 Tensor Cores. The 
GPU was set up in the cloud on 
AWS.

https://trixi-framework.github.io/Trixi.jl/stable/
https://github.com/trixi-framework/Trixi.jl
https://cuda.juliagpu.org/stable/
https://github.com/JuliaGPU/CUDA.jl
https://summerofcode.withgoogle.com/programs/2023/projects/upstR7K2
https://github.com/huiyuxie/trixi_cuda
https://gist.github.com/huiyuxie/44b561f9f854aada98fdb37036081454
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://docs.aws.amazon.com/


GSoC 2023 Project Brief Review Cont’d 

3

PDE Problem ODE Problem

semi=SemidiscretizationH
yperbolic(...)

Pack equations, mesh, solver, 
initial and boundary conditions, 
and possible source terms.

ode=semidiscretize(...)

Phase 1

Semidiscretization is wrapped, 
turning the PDE problem into 
ODE problem.

Phase 2

sol=OrdinaryDiffEq.solve
(...)

Solve ODE problem through a 
time integration loop. 

Phase 3

ODEProblem(rhs!, u0_ode, tspan, semi)



GPUCPU

4

When solving the ODE problem…

GSoC 2023 Project Brief Review Cont’d 

du,u

Copy to

Initial 
du,u

Call rhs! Updated
du,u 

Other data 
from semi

Other data 
from semi

CPU

Other data 
from semi

Copy back

Updated
du,u 

Loop until some criteria 
are met…

u .= u .+ dt .* du



5

GSoC 2023 Project Brief Review Cont’d 

Implemented GPU solvers for 1D, 2D and 3D equation problems based on 
DGSEM with tree mesh.

rhs_gpu!(...)

copy_to_gpu!(...)
cuda_volume_integral!(...)
cuda_prolong2interfaces!(...)
cuda_interface_flux!(...)
cuda_prolong2boundaries!(...)
cuda_boundary_flux!(...)
cuda_surface_integral!(...)
cuda_jacobian!(...)
cuda_sources!(...)
copy_to_cpu!(...)

end

Take 2D problem 
for example!

Current issue is about data transfer 
and it is simple to optimize.



Tested both CPU and GPU implementation using example elixir_advection_basic.jl (2D 

equation problem), relative errors are shown as below: 

julia> extrema(du_gpu -du_cpu)./ maximum(abs, du_cpu) # Based on Float32

(-1.707497444828748e-5, 1.7006649665921008e-5)

julia> extrema(du_gpu -du_cpu)./ maximum(abs, du_cpu) # Based on Float64

(-3.3923170749628214e-14, 3.61847154662701e-14)

Remaining Precision Problems (32-bit v.s. 
64-bit) 

While using Float64 is much better than Float32,both cases 
caused accuracy issues. Why? 

6

https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_2d_dgsem/elixir_advection_basic.jl


IEEE Floating-Point Standard (IEEE 754)

7

Single precision (float/Float32): 32 bits  

Double precision (double/Float64): 64 bits  

M

ME

E

S

S

- Bias: Allows both positive(+) and negative(-) 
representation.

- Normalization (1.M): Maximizes number precision.
- Denormalization (0.M): Represents numbers close to zero. 

Use when n-bit exponent is zero. 

https://en.wikipedia.org/wiki/IEEE_754


8

Remaining Precision Problems (32-bit v.s. 
64-bit) 
 

 Case of 32-bit floating point (single/Float32) 

- Float64 is converted to Float32 (CPU-GPU).

- The 52-bit mantissa (i.e., fraction) of the Float64 is truncated (or rounded) to fit into the 

23-bit mantissa of the Float32.

Case of 64-bit floating point (double/Float64) 

- Float64 is NOT converted to Float32 (CPU-GPU).

- But why are there still accuracy errors?

With finite precision,  the order of number operation affect the accuracy of the 
final result. (See one toy example in the next slide!)



Toy example - 5-bit number representation system

- The smallest positive number can be represented (i.e., precision) is  

1*2^(-2)=0.25 (Can be easily verified!), and thus any number less than 

0.25 will underflow to zero.
- Consider the following two calculations: 

(1) 1.00*2^0 + 1.00*2^0 + 1.00*2^(-2) + 1.00*2^(-2)= 
1.00*2^1 + 1.00*2^(-2) + 1.00*2^(-2) = 1.00*2^1

(2) (1.00*2^0 + 1.00*2^0) + (1.00*2^(-2) + 1.00*2^(-2))= 
1.01*2^1

9

Remaining Precision Problems (Example 
of simple 5-bit system)

Sign: 1-bit
Exponent: 2-bit
Fraction: 2-bit

Both (1) and (2) are using binary!



10

Remaining Precision Problems (How to 
deal with?)

Reasons have been identified! 

- GPU programming (i.e., parallel programming) adopt parallel computing strategy, that is, the 

order of operations may not be sequential (like summing up an array of numbers).

 How to deal with this issue?

(1) Easy approach: Sorting is frequently used in parallel numerical algorithms 

- Group numerical values close to each other in the same group.

- Perform operation (e.g., addition) in each group, more likely to get accurate result.

- Sign of numbers should be taken into account.

(2) Advanced approach: Kahan’s Summation Algorithm (i.e., Compensated Summation 

Algorithm) - Only for accurate summation. 

Trade-off: Speed v.s. Precision 

https://en.wikipedia.org/wiki/Kahan_summation_algorithm


11

Remaining Precision Problems (Q&A)

Typically, there is a trade-off between speed and precision

- Use Float32 /float, low precision but high speed 
- Use Float64 /double, high precision but low speed -

Further nested trade-off problem (can be applied to both 32-bit and 64-bit)

- Apply algorithm, improve precision but affect speed
- No algorithm, keep errors and speed 

Which one is more preferable, and what level of accuracy error is acceptable? (Given the 
context of solving PDE problems.)

Relative Error Formula



12

Optimization of Existing CUDA Kernels 
(Some Reviews)

Recall what I have said in the GSoC project report…

- Implement custom CUDA kernels instead of using existing types (e.g., CuArray type).

- Avoid using conditional statement (e.g., if-then-else branches) in CUDA kernels.

- Decrease the number of CUDA kernel calls (i.e., calls to __global__ functions) within a 

certain function (i.e., __host__ function). 

But these are not enough…

- We have to further optimize 

CUDA kernels!

https://gist.github.com/huiyuxie/44b561f9f854aada98fdb37036081454


13

Optimization of Existing CUDA Kernels 
(Why CUDA/C++?)

Choose to optimize existing kernels based on CUDA/C++. Why?

- CUDA/C++ is more mature than cuda.jl (i.e., more runtime APIs).

- CUDA/C++ has more documentations and examples.

- Existing optimization examples are demonstrated with CUDA/C++.

Julia GPU Code
(CUDA.jl)

Translate to C++ GPU Code
(CUDA/C++)

Optimize

C++ GPU Code
(CUDA/C++)

Julia GPU Code
(CUDA.jl)

Translate back

Almost done!

C++: 0-indexed and 
row-based

Julia: 1-indexed and 
column-based

https://cuda.juliagpu.org/stable/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://cuda.juliagpu.org/stable/


14

Compute-to-Global-Memory-Access Ratio
(Kernel Optimization)

Let’s look at this example!

Classic & Simple: 
Square matrix multiplication 

Compute-to-Global-Memory-Access Ratio  = #(times of floating-point calculation 

performed) / #(times of accessing to global memory) within a program region

Equals 1.0!
But… what is global memory?



15

GPU Memory Architecture/Layout
(Kernel Optimization)

Registers - Thread scope - 

Fastest - Very limited 

Shared memory - Block scope - 

Fast - Limited 

Global memory - Grid scope 

(GPU device) -

Slow - Not limited

Complicated… but…
Good Performance

Bad Performance

Reside in global memory!And cudaMalloc()



16

GPU Memory Architecture/Layout Cont’d
(Kernel Optimization)

Let’s use this example to figure out memory types!
Normally, allocated by calling 
cudaMalloc() ,  thus they are in 
global memory.

Recall that allocating whole arrays 
is not allowed in Julia (CUDA.jl). 
Why?   
 - Use shared memory is better.

Same for our du and u variables!



Optimization of Existing CUDA Kernels 
(Insights from Ratio…)

17

Check the formula again: 

- Higher ratio implies better performance 

- Lower ratio implies worse performance

Generally there are two ways (straightforward!)

- Increase numerator (But almost fixed…)

- Decrease denominator   - (1) Use registers  - (2) Use shared memory - (3) Keep in global memory

Compute-to-Global-Memory-Access Ratio  = #(times of floating-point calculation 

performed) / #(times of accessing to global memory) within a program region

Have to increase the 
ratio! But how?

Common approach by programmers!



Optimization of Existing CUDA Kernels 
(Insights from Ratio…)

18

How to decrease denominator (i.e., decrease the times of accessing global memory):

- Use registers (Very limited! Cannot allocate large amounts of data…)  

- Use shared memory (Viable!)

- Keep in global memory (Viable!)

Go back to our 
previous example!



Optimization of Existing CUDA Kernels 
(Shared Memory and Tiling)

19

(1) Declare shared memory 

(2) Copy from global to shared

(3) Access to shared memory

What is __syncthreads()?

1st sync: Make sure all necessary data 
are loaded into a single tile (of shared 
memory).
2nd sync: Make sure all data from a 
single tile (of shared memory) have 
been used before being replacing.

Still confused? 
No worries!

#define TILE_WIDTH …

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#cooperative-groups


Optimization of Existing CUDA Kernels 
(Shared Memory and Tiling) Do some visualization!

All entries within the 
same tile share same 
data in each phase!

Load data to shared 
memory based on 
the entry location 
relative to the tile!

20



21

Optimization of Existing CUDA Kernels 
(Shared Memory and Tiling)

Do some calculation!

TILE_WIDTH * #(new times of accessing global memory) 
=  #(original times of accessing global memory)

#(new times of accessing global memory)
= #(original times of accessing global memory)/TILE_WIDTH

Global memory accessing be reduced by times!
But what is the best size for tiling?



Consider the following extreme cases:
- If size for tiling is too large, we will exceed the limit of shared memory per 

block.
- If size for tiling is too small, we will have few performance improvement.

22

Optimization of Existing CUDA Kernels 
(About Size for Tiling…)

cuDeviceGetAttribute()
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER
_BLOCK
CU_DEVICE_ATTRIBUTE_WARP_SIZE
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK
…

The best size actually depends on the matrix 
size and the GPU architecture. And the tile 
size often matches block size. 

Fortunately, programmers can dynamically 
allocate shared memory during runtime!

Within the limit, the larger 
the better? Not really… 
Need performance tuning.

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266


23

Optimization of Existing CUDA Kernels 
(Dynamic allocation of Shared Memory)

Let’s start with kernel configuration and execution. Get the tile size (and thus the size of 
shared memory) based on some 
constraints:

- Tile memory cannot exceed 
maxSharedMemPerBlock.

-  Block size cannot exceed 
maxThreadsPerBlock.

- Tile size (i.e., tileWidth ) should 
be smaller than matrix size (i.e., 
width).

What else…? 

Launch up the kernel by passing the 
size of shared memory… 

Case dependent!

Warning: Shared memory configurator should not 
be too complex! Bad performance again!



Optimization of Existing CUDA Kernels 
(Dynamic allocation of Shared Memory)

24

Check  CUDA  programming 
__shared__ references here!

Then go quick with the kernel 
implementation.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#shared


Optimization of Existing CUDA Kernels
(Back to Our Project…)

25

Let’s take  weak_form_kernel!()
from 1D problem as an example!

Recall: Julia is 1-indexed 
and column-based.

Recall: C++ is 0-indexed 
and row-based.



Optimization of Existing CUDA Kernels
(Back to Our Project…)

26

Do some optimization (tiling via 
shared memory)! #define TILE_WIDTH …

Tiling along row and column (i.e., index i 
and j),  keep layer (i.e., index k) intact.

Boundary check! Matrix size 
is a multiple of tile size?

Further optimization 
via dynamic allocation 
of shared memory…



Optimization of Existing CUDA Kernels 
(Memory Coalescing)

27

How to decrease denominator (i.e., decrease the times of accessing global memory):

- Use registers (Very limited! Cannot allocate large amounts of data…)  

- Use shared memory (Viable!)

- Keep in global memory (Viable!) Already discussed!

Go for it now!

The global memory of a CUDA device is implemented with DRAMs (Dynamic 
Random-Access Memory). 

Each time a DRAM location is accessed, a range of consecutive locations that 
includes the requested location are actually accessed (i.e., DRAM burst). 

Good prerequisite for  
memory coalescing!

https://en.wikipedia.org/wiki/Dynamic_random-access_memory


Optimization of Existing CUDA Kernels 
(Memory Coalescing)

28

Array elements in C(C++) and CUDA are 
placed into linearly addressed  memory 
space based on row-major convention.

What about Julia and CUDA.jl?

Column-major!

- Left is coalesced in CUDA.jl (Julia). 
- Right is coalesced in CUDA (C++).

Why?



Optimization of Existing CUDA Kernels 
(Memory Coalescing Cont’d)

29

In a row-based layout, consecutive data 
is accessed at each iteration.

In a column-based layout, consecutive 
data is accessed at each iteration.



Optimization of Existing CUDA Kernels 
(Corner Turning)

30

Tiling algorithm again!

In the example of matrix multiplication using CUDA/C++, the row 
interaction is necessary. How can we achieve memory coalescing…? 

Memory coalescing from 
single one tile…
It is called corner turning!

What about Julia/CUDA.jl?



Optimization of Existing CUDA Kernels 
(Short Summary)

31

To achieve a high compute-to-global-memory-access ratio, we adopt tiling 
algorithm, which bas basically has two advantages:

- The number of global memory loads is reduced due to the reuse of 
data in the shared memory.

- The renaming global memory loads are coalesced so the DRAM 
bandwidth utilization is further improved. 

Therefore, the main optimization strategy is to apply the tiling algorithm to 
our existing CUDA kernels.

What else can we do…?

Note that once the data is in the shared memory, 
they can be accessed either on a row basis or a 
column basis with much less performance variation 
because it is high-speed on-chip memory.



Optimization of Existing CUDA Kernels 
(About Sparse Matrix Computation…)

32

When solving the ODE problem, some data from semi (like cache.xx.xx) are 
sparse and remain unchanged during iteration (time integration).

A waste of memory bandwidth if 
zeros are doing nothing!



Sparse Matrix Parallel Computation 
(Some Brief Sketch)

33

SpMV: Sparse Matrix-Vector

SpMV/CSR Kernel Does not make memory coalescing and
incur control flow divergence in all warps.

SpMV/ELL Kernel

Padding and transposition

CSR: Compressed Sparse Row

ELL: ELLPACK 
Used for solving BVP 

One or a small number of rows have 
exceedingly large number of nonzero 
elements.

Hybrid 
SpMV/ELL-COO 

Kernel

Store rows separately 

The padding overhead may still be significant 
for the rest of rows.

COO: Coordinate JDS…

Trade-off: Format 
transformation overhead 
v.s. Runtime speed

How many loops?



References

34

1. Kirk, D. B., & Hwu, W. W. (2016). Programming Massively Parallel 
Processors: A Hands-on Approach (3rd ed.). Elsevier.

2. NVIDIA. (n.d.). CUDA C Programming Guide. Retrieved December 18, 
2023, from 
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.h
tml

3. Trixi.jl Developers. (n.d.). Trixi.jl Documentation. Retrieved December 
18, from https://trixi-framework.github.io/Trixi.jl/stable/

4. CUDA.jl Developers. (n.d.). CUDA.jl Documentation. Retrieved 
December 18, from https://cuda.juliagpu.org/stable/

5. Amazon Web Services, Inc. (n.d.). AWS Documentation. Retrieved 
December 18, from https://docs.aws.amazon.com/

https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.html
https://trixi-framework.github.io/Trixi.jl/stable/
https://cuda.juliagpu.org/stable/
https://docs.aws.amazon.com/


Q&A

35

We have discussed a portion of the future work, focusing on the 
kernel optimization aspect. 

Are there any questions so far?


