

GPU Programming Optimization - GSoC 2023 (Cont'd)

Huiyu Xie huiyuxie.sde@gmail.com

The project focused on accelerating the <u>discretization processes used in</u> <u>solving partial differential equations (PDEs)</u> via <u>GPU programming</u>.

Trixi.il

Note: The GPU type selected for this project is the <u>NVIDIA Tesla</u> <u>V100</u>, which features <u>5120 CUDA</u> <u>Cores</u> and <u>640 Tensor Cores</u>. The GPU was set up in the cloud on AWS. Links to some relevant resources:

- Trixi.jl (<u>Docs</u>, <u>GitHub</u>)
- CUDA.jl (<u>Docs</u>, <u>GitHub</u>)
- GSoC 2023 Project (<u>Google</u>, <u>Code</u>, <u>Report</u>)
- CUDA (<u>Docs</u>)
- AWS (<u>Docs</u>)

ODEProblem (rhs!, u0 ode, tspan, semi)

When solving the ODE problem...

GSoC 2023 Project Brief Review Cont'd

Implemented GPU solvers for 1D, 2D and 3D equation problems based on DGSEM with tree mesh.

Trixi.jl / src / solvers / dgsem_tre	e /	rhs	_gpu!()	for example!
🗋 dg.jl		-		
🕒 dg_1d.jl		1	<pre>copy_to_gpu!(. cuda volume int</pre>	
dg_1d_parabolic.jl			cuda_prolong2in	
🗋 dg_2d.jl			cuda_interface_	
dg_2d_compressible_euler.jl			cuda_prolong2bo cuda_boundary_:	
🗋 dg_2d_parabolic.jl 🚺	Current issue is about dat	ta transfer	cuda_surface_i	-
🗋 dg_2d_parallel.jl	and it is simple to optimiz	e.	cuda_jacobian! cuda sources!(
🗋 dg_2d_subcell_limiters.jl			copy_to_cpu!(.	
🗋 dg_3d.jl		end	(

Tested both CPU and GPU implementation using example <u>elixir_advection_basic.jl</u> (2D equation problem), relative errors are shown as below:

julia> extrema(du_gpu -du_cpu)./ maximum(abs, du_cpu) # Based on Float32

```
(-1.707497444828748e-5, 1.7006649665921008e-5)
```

julia> extrema(du_gpu -du_cpu)./ maximum(abs, du_cpu) # Based on Float64

(-3.3923170749628214e-14, 3.61847154662701e-14)

While using Float64 is much better than Float32, both cases caused accuracy issues. Why?

Single precision (float/Float32): 32 bits

Double precision (double/Float64): 64 bits

Case of 32-bit floating point (single/Float32)

- Float64 is converted to Float32 (CPU-GPU).
- The 52-bit mantissa (i.e., fraction) of the Float64 is truncated (or rounded) to fit into the 23-bit mantissa of the Float32.

Case of 64-bit floating point (double/Float64)

- Float64 is <u>NOT</u> converted to Float32 (CPU-GPU).
- But why are there still accuracy errors?

With <u>finite precision</u>, the order of number operation affect the accuracy of the final result. (See one toy example in the next slide!)

Toy example - <u>5-bit</u> number representation system

- The <u>smallest positive number</u> can be represented (i.e., precision) is
 1*2^ (-2) =0.25 (Can be easily verified!), and thus any number <u>less than</u>
 0.25 will underflow to zero.
- Consider the following two calculations:
- (1) $1.00*2^{0} + 1.00*2^{0} + 1.00*2^{(-2)} + 1.00*2^{(-2)} =$ $1.00*2^{1} + 1.00*2^{(-2)} + 1.00*2^{(-2)} = 1.00*2^{1}$
- (2) $(1.00*2^{0} + 1.00*2^{0}) + (1.00*2^{(-2)} + 1.00*2^{(-2)}) = 1.01*2^{1}$

Both (1) and (2) are using binary!

Remaining Precision Problems (How to deal with?)

Reasons have been identified!

Trade-off: Speed v.s. Precision

- GPU programming (i.e., parallel programming) adopt parallel computing strategy, that is, the order of operations <u>may not be sequential</u> (like summing up an array of numbers).

How to deal with this issue?

- (1) Easy approach: Sorting is frequently used in parallel numerical algorithms
 - Group numerical values close to each other in the same group.
 - Perform operation (e.g., addition) in each group, more likely to get accurate result.
 - Sign of numbers should be taken into account.
- (2) Advanced approach: <u>Kahan's Summation Algorithm</u> (i.e., Compensated Summation Algorithm) Only for accurate summation.

julia Remaining Precision Problems (Q&A)

Typically, there is a <u>trade-off between speed and precision</u>

- Use Float32/float, low precision but high speed
- Use Float64 /double, high precision but low speed -

Further nested trade-off problem (can be applied to both 32-bit and 64-bit)

- Apply algorithm, improve precision but affect speed
- No algorithm, keep errors and speed

Which one is more preferable, and what level of accuracy error is acceptable? (Given the context of solving PDE problems.)

Relative Error Formula

$$\delta = \left|rac{v_A - v_E}{v_E}
ight| \cdot 100\%$$

Optimization of Existing CUDA Kernels (Some Reviews)

Recall what I have said in the <u>GSoC project report</u>...

- Implement custom CUDA kernels instead of using existing types (e.g., CuArray type).
- Avoid using conditional statement (e.g., if-then-else branches) in CUDA kernels.
- Decrease the number of CUDA kernel calls (i.e., calls to ______global___functions) within a certain function (i.e., __host___function).

But these are not enough...

- We have to further optimize CUDA kernels!

	Executed on the:	Only callable from the:
device float DeviceFunc()	device	device
globalvoid KernelFunc()	device	host
host float HostFunc()	host	host

<u>performed</u> / $\frac{\#(times of accessing to global memory)}{\#(times of modeling-point calculation)}$

julia **GPU** Memory Architecture/Layout (Kernel Optimization) Complicated... but...

Good Performance

Registers - Thread scop Fastest - Very limited

Shared memory - Block Fast - Limited

Global memory - Grid se (GPU device) -Varia Slow - Not limited

Bad Performance

And	<pre>cudaMalloc()</pre>
-----	-------------------------

scope -	Device code can:			X	Grid	
ed		per-thread registers per-thread local memory			Block (0, 0)	Block (0, 1)
lock scope -	 R/W per-block shared memory R/W per-grid global memory Read only per-grid constant 			ory	Shared Memory Registers Registers	Shared Memory Registers Registers
rid scope	memor	ту			Thread Thread (0, 0) (1, 0)	Thread (0, 0) Thread (1, 0) v v
Variable declaration		Memory	Scope	Lifetime	Global	Memory
Automatic variables other than arrays		Register	Thread	Kernel	v v Constan	t Memory
Automatic array variables		Local	Thread	Kernel		
	int SharedVar;	Shared	Block	Kernel		
deviceint GlobalVar;		Global	Grid	Application	Reside ir	nglobal memory!
deviceconstant_	_ int ConstVar;	Constant	Grid	Application		1

julia GPU Memory Architecture/Layout Cont'd (Kernel Optimization)

cudaMalloc(), thus they are in global memory.
oat* output, int size) {
Same for our du and u variables!
Recall that allocating whole arrays is not allowed in Julia (CUDA.j1). Why? - Use shared memory is better.

Optimization of Existing CUDA Kernels (Insights from Ratio...)

Check the formula again:

Compute-to-Global-Memory-Access Ratio = <u>#(times of floating-point calculation</u> performed) / <u>#(times of accessing to global memory)</u> within a program region

- Higher ratio implies better performance
- Lower ratio implies worse performance

Generally there are two ways (straightforward!)

- Increase numerator (But almost fixed...)
- Decrease denominator (1) Use registers (2) Use shared memory (3) Keep in global memory

Common approach by programmers!

Have to increase the ratio! But how?

Optimization of Existing CUDA Kernels (Insights from Ratio...)

How to decrease denominator (i.e., decrease the times of accessing global memory):

- Use registers (Very limited! <u>Cannot</u> allocate large amounts of data...)
- Use shared memory (Viable!)
- Keep in global memory (Viable!)

```
__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, intWidth) {
1
2
        int Row = blockIdx.y*blockDim.y+threadIdx.y;
3
        int Col = blockIdx.x*blockDim.x+threadIdx.x;
 5
        if ((Row < Width) && (Col < Width)) {
6
            float Pvalue = 0;
 7
8
            for (int k = 0; k < Width; ++k) {
9
                                                                          Go back to our
                 Pvalue += d M[Row*Width+k]*d N[k*Width+Col];
10
             }
11
                                                                           previous example!
            d P[Row*Width+Col] = Pvalue;
12
        }
13
14
```


Still confused? No worries!

#define TILE WIDTH ...

What is <u>syncthreads ()</u>?

(1) <u>Declare shared memory</u>

(2) <u>Copy from global to shared</u>

(3) Access to shared memory

1st sync: Make sure all necessary data are loaded into a single tile (of shared memory).

2nd sync: Make sure all data from a single tile (of shared memory) have been used before being replacing.

Optimization of Existing CUDA Kernels (Shared Memory and Tiling)

Do some visualization!

Optimization of Existing CUDA Kernels (Shared Memory and Tiling)

#(new times of accessing global memory)
= #(original times of accessing global memory)/TILE_WIDTH

Global memory accessing be reduced by times! But what is the <u>best size</u> for tiling?

Optimization of Existing CUDA Kernels (About Size for Tiling...)

Within the limit, the larger the better? Not really... Need performance tuning.

Consider the following extreme cases:

- If size for tiling is too large, we will exceed <u>the limit of shared memory per</u> <u>block</u>.
- If size for tiling is too small, we will have few performance improvement.

The best size actually depends on the <u>matrix</u> <u>size</u> and the <u>GPU architecture</u>. And the tile size often <u>matches block size</u>.

Fortunately, programmers can dynamically allocate shared memory during runtime!

CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER BLOCK CU_DEVICE_ATTRIBUTE_WARP_SIZE CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK ...

Optimization of Existing CUDA Kernels (Dynamic allocation of Shared Memory) Case dependent!

Let's start with kernel configuration and execution.

// Get CUDA devices...
cuDeviceGetAttribute(&maxSharedMemPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_SHARED_MEMORY_PER_BLOCK, cuDevice);
cuDeviceGetAttribute(&maxThreadsPerBlock,
CU_DEVICE_ATTRIBUTE_MAX_THREADS_PER_BLOCK, cuDevice);
size_t sizeShared;
int tileWidth
calculate_appropriate_SM_usage(&sizeShared, &tileWidth,
maxSharedMemPerBlock, maxThreadsPerBlock, width, ...);
matrixMulKernel<<<dimGrid, dimBlock, sizeShared>>>(Md, Nd, Pd, Width,
tileWidth);

Get the <u>tile size</u> (and thus <u>the size of</u> <u>shared memory</u>) based on some constraints:

- Tile memory cannot exceed maxSharedMemPerBlock.
- Block size cannot exceed maxThreadsPerBlock.
- Tile size (i.e., tileWidth) should be smaller than matrix size (i.e., width).

What else ...?

Launch up the kernel by passing the size of shared memory...

Warning: Shared memory configurator <u>should not</u> <u>be too complex</u>! Bad performance again!

Optimization of Existing CUDA Kernels (Dynamic allocation of Shared Memory)

```
_global__ void MatrixMulKernel(float* d_M, float* d_N, float* d P,
    int Width, int tileWidth) {
                                                                             Then go quick with the kernel
2
3
                                                                             implementation.
        extern shared float shared[];
4
5
        float* Mds = (float*)shared:
6
7
        float* Nds = (flaot*)&Mds[tileWidth * tileWidth]:
8
9
        int bx = blockIdx.x; int by = blockIdx.y;
        int tx = threadIdx.x; int ty = threadIdx.y;
10
11
        int Row = by * tileWidth + ty;
12
        int Col = bx * tileWidth + tx:
13
        float Pvalue = 0:
14
                                                                     Check CUDA programming
15
        for (int m = 0; m < Width/tileWidth; ++m) {</pre>
16
                                                                        shared references here!
17
            Mds[ty][tx] = d M[Row*Width + m*tileWidth + tx];
18
            Nds[ty][tx] = d N[(m*tileWidth + ty)*Width + Col];
19
20
            syncthreads();
21
            for (int k = 0; k < tileWidth; ++k) {
22
                Pvalue += Mds[ty][k] * Nds[k][tx];
23
24
            syncthreads();
25
26
        d P[Row*Width + Col] = Pvalue;
27
28
```


julia Optimiz

Optimization of Existing CUDA Kernels (Back to Our Project...) Do some optim

#define TILE_WIDTH ...

Do some optimization (tiling via shared memory)!

```
int height. int depth) {
       shared float derivativeDhatShared[TILE WIDTH][TILE WIDTH]
       ___shared___float_fluxArrayShared[TILE_WIDTH][TILE_WIDTH]
                                                                         Tiling along row and column (i.e., index \pm
       int bx = blockIdx.x; int by = blockIdx.y;
                                                                        and \frac{1}{2}), keep layer (i.e., index k) intact.
       int tx = threadIdx.x; int ty = threadIdx.y;
       int laver = blockIdx.z * blockDim.z + threadIdx.z;
       int Row = by * TILE_WIDTH + ty;
10
       int col = bx * TILE WIDTH + tx;
11
       float duValue = duArray[layer*height*width + Row*width + Col];
                                                                                     Boundary check! Matrix size
12
13
                                                                                     is a multiple of tile size?
       for (int m = 0; m < ceil(width/(float)TILE WIDTH; ++m) {</pre>
14
15
          if ((Col < width) && (m*TILE WIDTH+tx) < width)
16
               derivativeDhatShared[ty][tx] = derivativeDhat[Col*Width + m*TILE_WIDTH + tx];
17
           if ((Row < height) && (m*TILE WIDTH+tx) < width)
18
               fluxArravShared[tv][tx] = fluxArrav[laver*height*width + Row*Width + m*TILE WIDTH + tx]:
19
20
           syncthreads();
21
           for (int k = 0: k < TILE WIDTH: ++K) {
22
               duValue += derivativeDhatShared[tx][k] * fluxArrayShared[ty][k];
                                                                                   Further optimization
23
24
                                                                                   via dynamic allocation
           ___syncthreads();
25
26
                                                                                   of shared memory...
       duArray[layer*height*width + Row*width + Col] = Pvalue;
                                                                                                                      26
27
28
```


Optimization of Existing CUDA Kernels (Memory Coalescing)

How to decrease denominator (i.e., decrease the times of accessing global memory):

- Use registers (Very limited! <u>Cannot</u> allocate large amounts of data...)

The global memory of a CUDA device is implemented with <u>DRAMs</u> (Dynamic Random-Access Memory).

Each time a DRAM location is accessed, <u>a range of consecutive locations</u> that includes the requested location are actually accessed (i.e., DRAM burst).

Optimization of Existing CUDA Kernels (Memory Coalescing)

Array elements in C(C++) and CUDA are placed into linearly addressed memory space based on row-major convention.

What about Julia and CUDA.jl?

- Left is coalesced in CUDA.jl (Julia).
- Right is coalesced in CUDA (C++).

Optimization of Existing CUDA Kernels (Memory Coalescing Cont'd)

In a <u>row-based</u> layout, consecutive data is accessed at each iteration.

In a <u>column-based</u> layout, consecutive data is accessed at each iteration.

Optimization of Existing CUDA Kernels (Short Summary)

To achieve a high compute-to-global-memory-access ratio, we adopt <u>tiling</u> <u>algorithm</u>, which bas basically has two advantages:

- The number of global memory loads is reduced due to the reuse of data in the shared memory.
- The renaming global memory loads are coalesced so the DRAM bandwidth utilization is further improved.

What else can we do ...?

Therefore, the main optimization strategy is to **apply the tiling algorithm** to our existing CUDA kernels.

Note that once the data is in the shared memory, they can be accessed either on a row basis or a column basis with much less performance variation because it is <u>high-speed on-chip memory</u>.

Optimization of Existing CUDA Kernels (About Sparse Matrix Computation...)

When solving the ODE problem, some data from semi (like cache.xx.xx) are sparse and remain unchanged during iteration (time integration).

A waste of memory bandwidth if zeros are doing nothing!

Kernel

Sparse Matrix Parallel Computation (Some Brief Sketch)

Trade-off: Format transformation overhead v.s. Runtime speed

SpMV: Sparse Matrix-Vector CSR: Compressed Sparse Row How many loops? Does not make memory coalescing and SpMV/CSR Kernel incur control flow divergence in all warps. ELL: ELLPACK Padding and transposition Used for solving BVP One or a small number of rows have SpMV/ELL Kernel exceedingly large number of nonzero elements. Store rows separately JDS... COO: Coordinate Hybrid The padding overhead may still be significant SpMV/ELL-COO for the rest of rows.

- 1. Kirk, D. B., & Hwu, W. W. (2016). Programming Massively Parallel Processors: A Hands-on Approach (3rd ed.). Elsevier.
- NVIDIA. (n.d.). CUDA C Programming Guide. Retrieved December 18, 2023, from <u>https://docs.nvidia.com/cuda/cuda-c-programming-guide/contents.h</u> <u>tml</u>
- 3. Trixi.jl Developers. (n.d.). *Trixi.jl Documentation*. Retrieved December 18, from <u>https://trixi-framework.github.io/Trixi.jl/stable/</u>
- 4. CUDA.jl Developers. (n.d.). *CUDA.jl Documentation*. Retrieved December 18, from <u>https://cuda.juliagpu.org/stable/</u>
- 5. Amazon Web Services, Inc. (n.d.). AWS Documentation. Retrieved December 18, from <u>https://docs.aws.amazon.com/</u>

We have discussed a portion of the future work, focusing on the kernel optimization aspect.

Are there any questions so far?