
GSoC 2023 Project Proposal

Exploration of GPU Computing: GPU Acceleration for
PDE Discretization in Trixi.jl using CUDA.jl

Author: (GitHub)Huiyu Xie
Last Updated: Apr 3, 2023
References: https://julialang.org/jsoc/gsoc/trixi/,
https://trixi-framework.github.io/Trixi.jl/stable/, https://cuda.juliagpu.org/stable/

Things have been done during the application period:
- Solve an open issue from SciML SimpleNonlinearSolve.jl, check here

https://github.com/huiyuxie/SimpleNonlinearSolve.jl
- Start a draft to implement the discretization and rewrite it for 1D advection

equation, check here https://github.com/huiyuxie/linear_advection_cuda
The raw implementation of discretization has been completed by following the
tutorials, and the rewriting part is still in process. In order to make the rewriting
process clear and easy to understand, a demo about how to transform
discretization into pure matrix-vector operations was created, check here
rewrite_demo. The demo rewrites the loop parts in the raw implementation and
uses the same notation as in the raw implementation.

Note: now in the process of importing CuArray to represent existing arrays(vectors and
matrices), and up to now all the processes are based on raw implementation. Rewriting
methods provided by Trixi.jl (e.g. TreeMesh() and semidiscretize()) are temporarily not
considered. In the future, if packing the implementation into different methods is
needed, the methods will be rewritten.

Background

GPUs can provide considerable speedups compared to CPUs for computational fluid
dynamic simulations of the kind performed in Trixi.jl. Julia provides several ways to
implement efficient code on GPUs, including CUDA.jl, AMDGPU.jl, and
KernelAbstractions.jl. CUDA.jl is a popular choice for NVIDIA GPUs, as it provides a
mature and feature-rich interface to the CUDA platform.

mailto:huiyuxie.sde@gmail.com
https://github.com/huiyuxie
https://julialang.org/jsoc/gsoc/trixi/
https://trixi-framework.github.io/Trixi.jl/stable/
https://cuda.juliagpu.org/stable/
https://github.com/huiyuxie/SimpleNonlinearSolve.jl
https://github.com/huiyuxie/linear_advection_cuda
https://drive.google.com/file/d/1D0VKxx-d3QivOyQgJcB0kouvz13XFx9u/view?usp=sharing
https://github.com/trixi-framework/Trixi.jl/
https://github.com/JuliaGPU/CUDA.jl


The combination of Trixi.jl and CUDA.jl enables users to perform high-performance
simulations of complex physical systems on NVIDIA GPUs, providing the speed and
accuracy required for cutting-edge scientific research and engineering applications.

Problem

By default, Trixi.jl implementations are CPU-based, meaning that the code is executed
on the CPU rather than on a GPU. However, Trixi.jl provides support for GPU
acceleration via the use of packages such as CUDA.jl, allowing users to take advantage
of the performance benefits of GPUs when available.

However, not all functionality in Trixi.jl has been ported to GPUs yet. Trixi.jl uses a
method of semi-discretization to solve partial differential equations (PDEs). First
discretize the PDE in space using meshes and then solve the resulting ODE system
numerically. The execution of these processes can achieve speedups on GPUs
compared to CPUs.

Therefore, it is necessary to implement the semi-discretization functionality of Trixi.jl on
GPUs platform to achieve better performance.

Goal and Tasks

In this project, the goal is to implement the semi-discretization functionality of Trixi.jl on
GPUs. The basic building blocks of a semi-discretization are mesh, equations, and
solver. This project focuses on cartesian meshes in Trixi.jl, specifically Trixi.TreeMesh,
to perform numerical schemes.

The TreeMesh can be generated in multiple spatial dimensions, including 1D, 2D, and
3D. The project starts with 1D cartesian meshes, then expands to 2D, 3D, and also
more complex geometries and sophisticated discretizations.

Here are the specific tasks to implement this project:

1. Write a simple 1D code for CPUs by taking the methods implemented in Trixi.jl as
a blueprint.

https://trixi-framework.github.io/Trixi.jl/stable/reference-trixi/#Trixi.TreeMesh


- Choose the sample problem: example PDE problems that can be solved with 1D
TreeMesh can be found in Trixi.jl/examples/tree_1d_dgsem, such as the
advection equation or the Burgers’ equation

- Analyze the methods: take the linear advection equation(basic) as an example,
the main parts need to implement are 1) semi-discretization, 2) ODE solvers and
callbacks, and 3) simulation

- Implement the methods:
1) DGSEM, TreeMesh, SemidiscretizationHyperbolic
2) semidiscretize, other callbacks
3) solve (from OrdinaryDiffEq.jl, possibly not considered)

2. Port the simple 1D CPU code to GPUs using one of the GPU packages as a
prototype.

- Identify the acceleration sections: find out the parts of code that can benefit from
the high parallelism offered by GPUs, possibly DGSEM and TreeMesh

- Convert the data structures: move data from the CPU to GPU by converting the
data structures to CUDA-compatible types, such as CuArrays (Array
programming in CUDA.jl)

- Write and launch CUDA kernels: write CUDA kernels and launch CUDA kernels
on GPUs with reference to Kernel programming in CUDA.jl

- Keep data on the GPUs: when the initial data is loaded onto the GPU memory,
keep data on the GPUs and all the subsequent kernel functions operate on the
data stored in the GPU memory (Memory management in CUDA.jl)

- Prototype GPU implementations: implement the whole data pipeline, that is,
moving data from the CPU to GPU and back again explicitly, to help develop
GPU prototype.

- Optimize the GPU code: optimize the performance by CUDA kernel
parallelization (Synchronization, similar to Parallelization in Trixi.jl), and further
optimize by use Profiling provided by CUDA.jl

- Compare the performance: compare the code performance on the CPU and GPU
by benchmarking

3. Extend the GPU implementations to more complex numerical methods and
settings, and to different types of GPUs.

- Extend to 2D and 3D: after the completion of 1D GPU prototype, it is easy to
extend implementation to 2D and 3D GPU prototype by repeating the sequential
substeps in above point 2

https://github.com/trixi-framework/Trixi.jl/tree/main/examples/tree_1d_dgsem
https://github.com/trixi-framework/Trixi.jl/blob/main/examples/tree_1d_dgsem/elixir_advection_basic.jl
https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/solvers/dgsem/dgsem.jl#L14-L23
https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/meshes/tree_mesh.jl#L23-L27
https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/semidiscretization/semidiscretization_hyperbolic_parabolic.jl#L215-L223
https://github.com/SciML/OrdinaryDiffEq.jl
https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/solvers/dgsem/dgsem.jl#L14-L23
https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/meshes/tree_mesh.jl#L23-L27
https://github.com/JuliaGPU/CuArrays.jl
https://cuda.juliagpu.org/stable/usage/array/#Array-programming
https://cuda.juliagpu.org/stable/usage/array/#Array-programming
https://cuda.juliagpu.org/stable/api/kernel/#Kernel-programming
https://cuda.juliagpu.org/stable/usage/memory/
https://cuda.juliagpu.org/stable/api/kernel/#Synchronization
https://cuda.juliagpu.org/stable/api/kernel/#Synchronization
https://cuda.juliagpu.org/stable/development/profiling/


- Extend to more methods and setting: focus on curvilinear meshes such as
Trixi.StructuredMesh and another kind of solver like DGMulti

- (Optional) Extend to different types of GPUs: explore GPU computing on different
GPU programming packages in Julia, such as AMDGPU.jl for AMD GPUs, and
KernelAbstractions.jl, which provides a single frontend to generate code for
multiple GPU backends

Timeline

This project is scheduled to be completed within 350 hours, starting on ,May 29, 2023
and ending on . (GSoC 2023 Timeline). The following week-by-weekNov 6, 2023
timeline provides a guideline of how the project will be done:

1. Start up (before May 29, 2023):

Get familiar with Trixi.jl and CUDA.jl repositories
Review materials about Numerical Analysis and GPU Computing (CUDA
Toolkit Doc)
Prepare cloud computing resources (AWS) for running NVIDIA GPUs

2. In progress (May 29, 2023 - Nov 6, 2023):

First Stage----------------------------------------------------

Week 1, 2, 3 (May 29 - Jun 18):
Choose the sample problem
Analyze the methods
Implement the methods

Week 4, 5, 6 (Jun 19 - Jul 9):
Identify the acceleration sections
Convert the data structures
Write and launch CUDA kernels

Week 7 (Jul 10 - Jul 16):
Keep data on the GPUs

Week 8, 9, 10 (Jul 17 - Aug 6):
Prototype GPU implementations
Optimize the GPU code

Week 11 (Aug 7 - Aug 13)

https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/meshes/structured_mesh.jl#L8-L15
https://github.com/trixi-framework/Trixi.jl/blob/01e0231a9564943a5759ec193821a5f9b1de4e44/src/meshes/dgmulti_meshes.jl#L7-L13
https://github.com/JuliaGPU/AMDGPU.jl
https://github.com/JuliaGPU/KernelAbstractions.jl
https://developers.google.com/open-source/gsoc/timeline
https://github.com/trixi-framework/Trixi.jl/
https://github.com/JuliaGPU/CUDA.jl
http://persson.berkeley.edu/math128a/
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31151/
https://docs.nvidia.com/cuda/index.html
https://docs.nvidia.com/cuda/index.html


Compare the performance

Second Stage----------------------------------------------------

Week 12, 13, 14 (Aug14 - Sep 17)
Extend to 2D and 3D

Third Stage----------------------------------------------------

Week 15, 16, 17, 18, 19, 20 (Sep 18 - Nov 6)
Extend to more methods and setting

Future Work

Probably will continue to work on extending functionality of Trixi.jl to different types of GPUs, like
AMDGPU.jl and KernelAbstractions.jl if permitted.


