
Rounding Error Analysis in Weak Form Kernel

for 1D Equation on GPU

Huiyu Xie

Apr 9, 2024

1 Introduction

In this article, rounding error analysis is applied to the 1D weak form ker-
nel from our project. This kernel is selected since it is concise (no any further
calculations such as flux computation), and it is close to simple matrix multi-
plication, a widely implemented kernel on GPU. This error analysis will reveal
the error bound model for this kernel (can also be referred to as an algorithm)
given any input data.

Generally, this work will go through a sample error analysis based on one of
our GPU kernels to further address the question of error checking in algorithm
implementation.

2 Models of Arithmetic

To carry out the rounding error analysis of our algorithm, we have to adopt
models about the accuracy of the basic arithmetic operations. Given a floating
point number system F ⊂ R, for any x, y ∈ F ,

fl(x+ y) = (x+ y)(1 + δ1), |δ1| ≤ µ1 (1)

fl(x× y) = (x× y)(1 + δ2), |δ2| ≤ µ2 (2)

Note that we are using fl(·) here to denote the computed result of the expression,
and it can be treated as the rounding process in computers. In fact, (1) and
(2) always hold for IEEE standard arithmetic, and similar models also apply to
division and subtraction operations [1].

3 Algorithm Error Analysis

Note that in this analysis, we care about determining with determining the
model for rounding errors in the algorithm, instead of obtaining a specific error
bound.

The weak form kernel algorithm can be refactored as below

1

Algorithm 1 Weak Form Kernel

1: procedure WeakFormKernel(A,B,C)
2: Input: A (3D matrix), B (3D matrix), C (2D matrix)
3: m← number of rows in A
4: n← number of columns in A
5: p← number of layers in A
6: Launch m× n× p threads in parallel
7: for all threads (i, j, k) parallel do
8: for ii← 1 to n do
9: A[i, j, k]← A[i, j, k] +B[i, ii, k]× C[j, ii]

10: end for
11: end for
12: end procedure

Algorithm 1 involves 3D matrices, but it can be treated as a variation of simple
2D matrix multiplication, since the basis of matrix multiplication is the inner
product.

So the error analysis for Algorithm 1 can start with inner product. Consider
the inner product Sn = xTy, where x,y ∈ Rn. Note that we assume each
element of x and y belongs to F to make analysis simple. Furthermore, we
assume the evaluation Sn = x1y1 + . . . + xnyn is from left to right. Let Si =
x1y1 + . . .+ xiyi be the ith partial sum. By (1) and (2), we have

Ŝ1 = fl(x1y1) = x1y1(1 + δ1) (3)

Ŝ2 = fl(Ŝ1 + x2y2) = (Ŝ1 + x2y2(1 + δ2))(1 + δ3)

= x1y1(1 + δ1)(1 + δ3) + x2y2(1 + δ2)(1 + δ3) (4)

Ŝ3 = fl(Ŝ2 + x3y3) = (Ŝ2 + x3y3(1 + δ4))(1 + δ5)

= x1y1(1 + δ1)(1 + δ3)(1 + δ5)

+ x2y2(1 + δ2)(1 + δ3)(1 + δ5) + x3y3(1 + δ4)(1 + δ5) (5)

where |δi| ≤ µ for i = 1, 2, 3, 4, 5. Note that the hat notation is used to denote
the computed result. Based on (3), (4), and (5), we can get the general pattern
by refactoring each δi appears in the evaluation. Overall, we have

Ŝn = x1y1(1 + η1)
n + x2y2(1 + η2)

n

+ x3y3(1 + η3)
n−1 + · · ·+ xnyn(1 + ηn)

2 (6)

There are various ways to simplify (6), and one elegant way is by applying
the following result.

Lemma 1. If |ηi| ≤ µ and ρi = ±1 for i = 1, ..., n, and nµ < 1, then

n∏
i=1

(1 + ηi)
ρi = 1 + θn

2

where
|θn| ≤

nµ

1− nµ
=: γn

Proof. Proof skipped.

Note that it can be easy to verify that any ηi in (6) satisfy |ηi| ≤ µ, and the
condition nµ < 1 is true in nearly any circumstance that might arise with IEEE
floating point number arithmetic [1].

By applying Lemma 1 to (6), we get

Ŝn = x1y1(1 + θn) + x2y2(1 + θ′n)

+ x3y3(1 + θn−1) + · · ·+ xnyn(1 + θ2) (7)

This result can be interpreted as follows: the computed result is the exact one
for a perturbed set of data x1, ..., xn, y1(1+θn), y2(1+θ′n), ..., yn(1+θ2) (alterna-
tively, we can perturb xi and leave yi alone), and each perturbation is bounded
by γn.

Previously we have assumed that the evaluation of Sn = xTy is from left to
right, and it is easy to get that for any order of evaluation, we have

fl(xTy) = (x+∆x)Ty = xT (y +∆y),

|∆x| ≤ γn|x|, |∆y| ≤ γn|y| (8)

where the absolute value operation (|x| and |y|, etc.) is applied elementwise
and the inequality is also hold elementwise (and same for matrices later).

Now we can proceed the analysis of our weak form kernel. But first, to
more directly apply the result (8) from the inner product, we have to perform
the variation based on Algorithm 1. It is easy to see A,B ∈ Rm×n×p and
C ∈ Rn×n, and let A(k) = (aijk)i=1,...,m; j=1,...,n denote the kth layer of A (and

similar for B). Then we construct two matrices B′ and C ′ as follows

B′ =
((

B′(k))
k=1,...,p

)
=

((
B(k)A(k)

)
k=1,...,p

)
(9)

C ′ =

(
CT

In

)
(10)

where In is the identity matrix of size n. Now we have A(k) = B′(k)C ′, where
B′ ∈ Rm×2n×p and C ∈ R2n×n, and the variation of Algorithm 1 can be found
as below

3

Algorithm 2 Weak Form Kernel Variation

1: procedure WeakFormKernelVariation(A,B′, C ′)
2: Input: A (3D matrix), B′ (3D matrix), C ′ (2D matrix)
3: m← number of rows in A
4: n← number of columns in A
5: p← number of layers in A
6: Launch m× n× p threads in parallel
7: for all threads (i, j, k) parallel do
8: for ii← 1 to 2n do
9: A[i, j, k]← B′[i, ii, k]× C ′[ii, j]

10: end for
11: end for
12: end procedure

Note that the error analysis for Algorithm 1 and 2 is the same (think about it),
and lines 8 and 9 in Algorithm 2 are purely performing inner products between
two vectors of size 2n (essentially size n+ 1, think about it again).

To make analysis easier, we assume elements of input A, B′, and C ′ can be
represented exactly in floating point number system (i.e., belong to F). First
consider the analysis on the kth layer of A and B′. Let aj is the jth column in

A(k), bTi be the ith row in B′(k), and cj be the jth column in C ′. Based on (8)
we have

âji = (bi +∆bi)
T cj , |∆bi| ≤ γn+1|bi| (11)

and as aj = B′cj for j = 1, ..., n, we can further have

âj = (B′(k) +∆B
′(k)
j)cj , |∆B

′(k)
j | ≤ γn+1|B′(k)| (12)

where ∆B
′(k)
j is the perturbation matrix for computing aj and further

|aj − âj | ≤ γn+1|B′(k)||cj | (13)

and thus we can easily get

|A(k) − Â(k)| ≤ γn+1|B′(k)||C ′| (14)

and the corresponding normwise bounds include

∥A(k) − Â(k)∥p ≤ γn+1∥B′(k)∥p∥C ′∥p, p = 1,∞, F (15)

where F in (15) denotes the Frobenius norm. The induction from (14) to (15) is
easy to check, and proofs are skipped here to save space (and a complementary
document will be provided later to complete these proofs).

Note that (15) holds for any k, so the error bound model is formulated layer-
wise for our weak form kernel. For those interested in obtaining an exact value

4

of the error bound, please refer to [2] to first obtain µ1 and µ2 in equations (1)
and (2), respectively. These values are closely related to machine epsilon (but
not exactly the same, remember errors will accumulate).

Therefore, the error bound model for weak form kernel is found, and this
model reflects the sensitivity of the product result to componentwise relative
perturbations in the input data.

4 Caveat

There are some caveats that are worthwhile to mention here. Actually, our
error model is constructed based on the general assumption that the design of
the GPU (specifically, the NVIDIA GPU that is applied in our project) strictly
follows the IEEE standard, but this is not the case for tensor cores[3]. Thus,
this factor may (or may not, as some important design details have not been
published by NVIDIA, so there is no absolute conclusion) render our error model
unreliable in the end.

5 Conclusion

In general, rounding error analysis serves the purpose of demonstrating the
existence of bounds on the effects of rounding errors on an algorithm. Ideally,
these bounds are small for any problem data, but for some algorithms (which
we call unstable), there is no useful error bound [1]. Now we can address the
problem that concerns us (as a group).

Generally, the most effective way to validate an algorithm imple-
mentation on a GPU is to adopt a heuristic approach.

This means that developers should focus on ensuring each step of the algorithm
on the GPU is logically equivalent to its implementation on the CPU, instead
of relying solely on error bound checking. However, error bound checking serves
as a good method for double checking.

Here are the supporting reasons for the above conclusion:

1. The error falling within the error bound is only a necessary condition for
correct algorithm implementation.

2. The error analysis for most algorithms is complicated and time-consuming.

3. The arithmetic behaviors of GPUs are not deterministic due to their in-
trinsic design for acceleration.

References

[1] N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.,
Society for Industrial and Applied Mathematics, Philadelphia, PA, 2002.

5

[2] D. Goldberg, What Every Computer Scientist Should Know About Floating-
Point Arithmetic, ACM Computing Surveys (CSUR), vol. 23, no. 1, pp. 5–
48, 1991. [Online]. Available: https://dl.acm.org/doi/10.1145/103162.
103163.

[3] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, Numerical behavior
of NVIDIA tensor cores, PeerJ Computer Science, 7:e330, 2021. https:
//doi.org/10.7717/peerj-cs.330

6

https://dl.acm.org/doi/10.1145/103162.103163
https://dl.acm.org/doi/10.1145/103162.103163
https://doi.org/10.7717/peerj-cs.330
https://doi.org/10.7717/peerj-cs.330

	Introduction
	Models of Arithmetic
	Algorithm Error Analysis
	Caveat
	Conclusion

